
On the Information Content of Program Traces

Michael Frumkin, Robert Hood and Jerry Yan 1

NAS Technical Report NAS-98-008 March 98

{frumkin,rhood,yan}@nas.nasa.gov

NAS Parallel Tools Group

NASA Ames Research Center

Mail Stop 258-6 or T27A- 1

Moffett Field, CA 94035-1000

Abstract

Program traces are used for analysis of program performance, memory utilization, and
communications as well as for program debugging. The trace contains records of execu-
tion events generated by monitoring units inserted into the program. The trace size limits
the resolution of execution events and restricts the user's ability to analyze the program

execution. We present a study of the information content of program traces and develop a
coding scheme which reduces the trace size to the limit given by the trace entropy. We
apply the coding to the traces of AIMS instrumented programs executed on the IBM SP2
and the SGI Power Challenge and compare it with other coding methods. Our technique
shows size of the trace can be reduced by more than a factor of 5.

1. MRJ Technology Sohttions, Inc., NASA Contract NAS2-14303, Moffett Field, CA 94035-1000

1. Introduction

A program trace contains records of the events that happened during the

program execution. Each record contains the event identifier, location

and the time when it happened. Depending on the event type, the record

may contain add itional information such as a message tag and a message

destination. The trace records are generated by the monitoring units

inserted into the program. This insertion can be done with an instrumen-

tation tool into the source code [4], into assembly code or even into a

loaded and running program [11]. An analysis of trace records gives data

on the program performance, memory utilization and helps in the pro-

gram debugging [13]. There are several tools for program instrumenta-

tion, monitoring and trace visualization: prof, gprof, pixie [3],

AIMS [4], Paradvn [11].

The larger the number of processors and the finer the event resolution,

the larger the program trace. The trace size (common trace size is a dozen

megabytes) limits the user's ability to monitor execution events and to

localize the statements causing problems with the program. A number of

studies were done to reduce the trace size [6]. In this paper we use an

information-theoretic technique to reduce average trace size to the theo-

retical low bound given by the trace entropy. Theoretically, the technique

is based on the Noiseless Coding Theorem [1] asserting that an average code

length of a random variable cannot be less than the entropy of this vari-

able. The appropriate code length can be achieved by using the Huffman

coding or by using the dynamic Huffman coding [9,10] if the distribution

is unknown a priory. In practice, this technique is based on the collection

of an event histogram and on the application of the Huffman coding. For

the set of records considered in this paper, the trace entropy is the sum of

the entropy of the program Markov chain, the communication entropy

and the entropy of time stamps. We give a method for calculation of the

three components of trace entropy and compare the entropy with results

of applying the standard compression technique (compres s and g zip).

For the four traces we considered our compression is better than gz ip

and reduces the size of trace by a factor of 5.

2. The Program Graph

Depending on the abstraction level, a sequential program can be repre-

sented by its call graph [3] orflow graph [2]. In this paper we use the flow

graph representation. The vertices of the flow graph are basic blocks of

the program code, and arcs are the possible ways for the program

counter (pc) to move between basic blocks. If the pc is pointing to a basic

block i, we will say that program is in the state i. A transition of the pro-

2

gram from one stateto another will be referred asan event by saying that

event i->j occurred if the pc moves from state i to state j.

An execution of a sequential program can be represented by a path in the

flow graph. The path starts at the first statement of the main function

(start) and terminates at the exit. If a program is in a state i and event i->j

occurrs we add the arc (i,j) to the path. The length of the execution is the

number of arcs h_ the path, see Figure 1. If only a subset of states is moni-

tored and only transitions between this reduced set of states are recorded,

the flow graph can be reduced to a smaller graph by discarding nonmon-

itored states and by adding arcs reflecting possible transitions between

the reduced set of states. This reduced flow graph will be referred as the

program graph. We will refer to the nodes of the graph as states.

Path =start, l,2,1,2,1,2,exit

FIGURE 1. A program graph and an execution path

We will consider traces of message passing parallel programs. An execu-

tion of each process of a parallel program can be represented by a path in

the program graph as described above. In a message passing program

pairs of processes interact by exchanging messages. This interdepen-

dency can be specified by a sequence of pairwise matching

send/receives.

The coding of traces of sequential programs is considered in sections 3

and 4. We consider coding of messages of message passing programs in

section 6. Coding of time stamps in parallel programs is considered in

section 7. Results of calculations of the minimal length of AIMS traces are

tabulated in section 8.

3

3. Number of Possible Traces

A simple lower bound for the length of a lossless code of a trace can be

obtained by comparing the number of traces with the number of codes.

There are at most 0(2 r_)codes of length L in the {0,1} alphabet, hence the

maximum code length can not be less than the logarithm of the number
of traces with N records 1.

The number of traces with N records is the number of directed paths in

the program graph G from start to exit of length N. This number can be

estimated through eigenvalues of the adjacency matrix of G:

A = [ao],l<i,j<n

where n is the number of states, a!j = 1 if there is an arc from the state i to

the state j and a!j = 0 otherwise. The number of paths from i to j of length

N equals the/jtti element of A N , see [7]. Let

A = U-1AU

be a spectral decomposition of A, where A is a diagonal matrix with _],

'2/ __fN]_l]->]_2] > "'" _]_n] elements on its main diagonal 2. Then

A = U- A U and for the number of paths of length N from i to j we have
a formula:

Nao = _ VilUlj+ ... +_,NvinUnj

where Vik and Uk; are elements of matrices U -1 and U respectively. Hence,

log aNij = O(N Io_ I_11) and log aNij = O(N log 0_1]) if we assume that vii and

Ulj arenonzero-.

The maximal module _ of eigenvalues of the adjacency matrix can be

estimated by means of maximal and minimal in- and out- degrees of the
states:

1. All logs are on base 2 in this paper

2. If A has nontrivial Jordan blocks our arguments can be modified appropriately without affect-

ing the result.

3. fin) = O(g(n)) if theJe are constants c and C such that cg(n) <f(n)<Cg(n). O(g(n)) is a class of func-
tions and we use notationfln) = O(g(n)) to indicate thatfis in this class

4

In a typical program graph, degreesof majority of statesarebounded by
aconstant; and only few stateshave larger degrees.This property can
exploited for tighter bounding of the maximum module of the eigenval-
ues. If, for example, one statehas (large) degreeD, and degrees of all

other states are bounded by b, then using Gershgorin Circle Theorem,

[12] we can get a sharper upper bound for the largest eigenvalue:

<b l D ()2-,_+ +

We can conclude that the minimum code length of a trace in the worst

case is the logarithm of the number of possible N event traces and can be
estimated as

L(N) = O(NlogL)

where _ is the maximal modules of eigenvalues of the adjacency matrix

of the program graph.

4. The Entropy of Traces

The transition of the pc from one state to an another can be considered as

a stochastic event. It means that each trace T has a probability p(T) to

appear as a trace of a program. We want to minimize the expected length
of trace code:

Zc(T)p(T) --+ Min

T

where c(T) is the code length of T.

The minimum can be obtained from the Noiseless Coding Theorem

[1, p. 37] which states that for any lossless coding of a random variable

with distribution {Pi} the minimum average code length can not be less

than the entropy' of this distribution, that is, H = -Z Pi log Pi. This bound

can be closely approached with a code having the imcode word length of

- [logpi] + 1 see [1, p. 39].

It follows that the minimum of expected length of trace code is close to

the entropy of the set of traces {T}. We will express the probability p(T)

through the transition probabilities of the program. For the probability

pjn+l of a path of length n+l to terminate in a state j we have a relation:

n+l Z nPj = Pi Pij
i

5

where pq is the transition probability from state i to state j. The relation

holds in the case when pq is independent of the path by which the state i
was reached as well as on the value of n. This property is known as

Markov property I11]. For now we will assume that the program has this

property. At the end of the section we will discuss a modification of state

definitions and enhancements to the program model which can be done

in the case where the state transitions lack the Markov property.

In the matrix form, the relation above can be written as follows: (pn+l)t=

(pn)t Q, where pn is the probability column vector, Q = [Pij] is the matrix of

transition probabilities and the superscript t means the transposition. If

we consider a Markov chain [1] with matrix Q as a transition matrix then

pn converges to a steady state probability vector of the Markov chain. The

steady state vector w is defined as the left eigenvector of Q with eigen-
value 1:

W-- wa

If Q is an irreducible matrix the Perron-Frobenius theorem [8, p. 399]

asserts that w exists and is unique.

In addition to the stationary distribution, we need the entropy of each

state i:

H (i) = -__,P ijlog p q

If x is a sequence of states then, T x will denote a trace with suffix x. The

superscript of trace T n denotes the number of events in the trace.

Now we can write a recurrence relation for entropy of traces of length

n+l through the entropy of traces of length n:

n+l

T "÷l J Tj

-)logp(Tq) = - p(T_)Pij(logp(T_) + logpij) =

n+ I j i T_j i T,j

-_ _ __._p(T;)pq(log p(T:) + iogpq) =

i rnJ

- p(Ti)logp(Ti) Pij+p(Ti) pqlogpq =

T, Y J

-_p(Tn)logp(T") - _[_p(TT)]tt(i)= tt.* ___,wiH(i)

T t \T_ / i

Here we use the above mentioned Markov property of the chain:

n+l) n
P(Tij = p(T i)Pq

and the property of the steady state vector of Markov chain: for large n

n

Ti

meaning that the probability of state i is equal to the probability of arriv-

ing to i in n steps.

From this relation it follows that for large n we can express the entropy of

traces trough a steady state vector of a Markov chain and the entropy of
its states:

H n _ nZwiH(i)

i

which gives us a lower bound for the expected length of the trace code.

If the Markov property is not true, then we can consider a more general

program model. It will lead us to a similar formula for the trace entropy;

however, to compute the entropy on right hand side is more difficult. The

states of this more general model will be sequences of I program states u

= ili2...i I and events will be transitions ili2...il-> i2...ilil+ 1. If the value of I is

such that the program does not remember how it got in state u then the

Markov property, will be true for the model and arguments similar to one

above can be applied.

5. The Ergodicity of a Program

How accurately does a program trace represent other possible executions

of the program? If a set of program inputs can be classified into different

categories and for different categories the program behavior varies, then

a trace on one input tells you a little about traces on inputs from a differ-

ent category. In order to get correct transition probabilities, a mixture of

traces of runs on different category inputs is necessary.

A program is called ergodic if the transition probabilities are independent

of program execution. Coding of traces of an ergodic program can be sig-

nificantly simplified. The transition probabilities can be estimated from

the trace of preliminary program execution. These probabilities can be

used for generating the Huffman code of the trace records of other execu-

tions of the program.

6. The Communication Entropy of Parallel Message Passing

Programs

We confine our considerations to single-threaded processes communicat-

ing by passing messages. Each process can be described by a program

graph as explained in section 2. Transitions between the states in different

processes are interdependent through exchanging messages. This causal-

ity relation between events in different processes can be uniquely recon-

structed if the program trace contains a set of pairwise matchable

sends/receives.

We will assume that the message passing program is MPI compliant,

meaning that the messages can be matched using MPI progress and order

rules, [4, pp.30-31].

• Progress: "If a pair of matching send and receives have been ini-

tialized on two processes, then at least one will complete..."

• Order: If two messages with the same tag are sent from the same

source to the same destination, then they are received in the

same order they were sent (the symmetrical property is true for

the receiver).

The first rule implies that if there are sends matching a receive, then the

receive must be matched with one of the sends (symmetrical for sends).

From the second rule it follows that if there are several sends matching a

receive, then the receive will be matched with the first posted send (sym-

metrical for sends). The second rule also implies that the message passing

program is deterministic if wild card MPI_ANY_SOURCE and calls

MPI_CANCEL and MPI_WAITANY are not used and no MPI error

occurred.

These rules together give rise to a unique way to match messages using

the process id, message tag and message order. Let Sq and R; i be lists of
sends and receives with source i and destination j. The matching can be

done by the iteration of the following step:

• Take the first receive r in R. i and find first matching send s in Sq- j
(since the messages already have the same source and the same

destination it means we take the first send with the same tag).

Remow: r and s from the lists.

Tagging messages allows changing the order in which the messages are

received. Two messages received in an order different from which they

were sent are called intertwined, cf. [4, p 31]. An appropriate tagging

allows receiving messages in an arbitrary order. In practice, intertwining

is limited by the sizeof systembuffers. An example of an intertwined
sequenceof messagesis shown in Figure 2. For the trace records of mes-
sagesit means that the record should contain the messagedestina-
tion/source and the messagetag. Otherwise the causality relation of
events in different processeswill not beuniquely reconstructible from the
tracerecords.

s

R

a a b a b b c c

t+. i--,d i--,d A
•,, --... /

-_,, ",4P. 41' +°,+

c b a b b a c a

FIGURE 2. Intertwining of two sequences by using tags a,b and c

We assume that the message passing program is deterministic. The pro-

gram sends/receives can be matched uniquely if for each pair of pro-

cesses i and j, a chronological list Sq of tags of messages sent by i to j and

a chronological list Rq of tags of messages received by i from j are speci-

fied. These lists can be composed into a send matrix S = [Sq] and a receive

matrix R = [Ri]] of the program. These matrices specify uniquely the cau-

sality relation between events of the program.

A pair of send/receive matrices is consistent if the length sij of the list Sij is

equal to rji" the length of the list Rji, and the number ti+k of tags with value
k is the same in both lists. In other words the matrix /rq i is a transposi-

tion of the matrix i sql and the list Rji is a permutation of the list Sq. Any

consistent pair of matrices can arise as a send/receive matrix pair of the

program (it is sufficient to set message tags according to the list ele-

ments).

Now we fix sij= _)i and tqk and count the number of possible consistent S
an R matrices. As in section 3 the logarithm of this number will give us

the minimum code length of the communication matrices of the pro-

gram.

Let s i be the tota] number of sends in process i, s i = sil + Si2 +... + Sip, where

p is the number of processes. For the given Sil, Si2 Sip the total number

9

of possible send sequencesin the process i (which is the number of possi-
ble instances of/th row of the matrix S) is

Si- si]- 0Hsq ! . t(sq)

where

t(sij) - Htqk !

k

is the number of possible lists of length sij having tijk tags with value k.

The send sequences in different processes are independent so the total

number of send lists equals FIS i. A similar formula for the jth row of

matrix R is true:

P

R. = r j! Ht(sij)

J HsiT! i

i

where 1) = Sli + s2i +... + Spi.Let M =s 1 + s2 +... + Sp =r 1 + r 2 +... + rp be the
total number of messages in the program.

The total number of send/receive matrices equals FISiHR j. The logarithm

of this number can be well approximated with the Stirling formula as:

M(H s + H r + 2Hst)

where

PP1 sij _ _ si _-_ Sqlo so

H s =-_IZZSijl°g"_i. . - ' M 2--" --_i. g --_i

l J l J

P P Pr.P

Es __Z¢,zSi lo si;
. jt ri . . ri ri

i j t j

1

nr = -MZZ

10

are the entropy of the program sendsand receivesrespectively and

p p K p p K

ti;klogtij k sij_" tijk _ tijk
l Y'F'Z = -ZZ-'MZ"sij ijH st = -_I _ _ g so _ lug

ijk ij k

is the entropy of message tags in the program, where K is the number of

tags.

We can conclude this section saying that the minimal code length of

communication events of a message passing program equals to the num-

ber program messages times the sum of the communication entropy of

the program and of the entropy of the message tags. The last two num-

bers can be easily computed if the trace records contain the message

source, destination and message tags, cf. Table 3.

7. Time Stamps in Program Trace

Assume that the sequence of trace events is known and we want to spec-

ify the time when the events occurred. The direct recording of the time

stamps expressed in counts of clock periods or time resolution of the

clock counter would give rise to the code of length

L = ZNil°gT i

i

where T i is the execution time of ith process and N i is the number of

events in the trace of ith process. Should we record the elapsed time
between events we would have a similar formula for the code length of

the time stamps with Ti replaced by the maximum time between events

in ith process which can be substantially smaller than T i. The use of an

entropy efficient coding would reduce the code length to

L = ZNiHi

i

where H i is the entropy of the distribution of time intervals between

events.

The time stamps are used for evaluation of the program performance,

ordering of the program events and for displaying of program traces.

Neither of these applications requires an exact time and can tolerate

approximate values of time stamps as long as the approximation does

not change event ordering and event resolution. For the approximation,

11

it is essential not to move events relative to each other significantly. This

requirement can be formulated in terms of event chronology defined as a

chronologically ordered sequence of times of events in all processes of

the program. Let Xkl be the time interval between neighbor events k and 1

and zl be the time interval between neighbor events to I in event chronol-

ogy, see Figure 3

k 1
akl

Poi I I I i
Ski

I

P1 I I t i I i i i t t it i I
I

i

j i t t i i I i I i It I i i i I I
Event chronology "_l

FIGURE 3. Combining events on different processes into event
chronology

We will require that the approximation akl of the time stamp Xkl of any

event is within _ times the length of the interval between neighbor

events:

Xkl - akl I <- _,T,I

Let Pi = P{Skl -- i } and r = E'_. If we use the approximation of time stamps

with the precision e, then instead of the random variable x with the distri-

bution {Pi} we have to code the random variable a with the distribution

{qm}

qm = Z Pi = ZP(m_*l <x<(m+ 1)_'_/)

mr<i<(m+ 1)r

For the entropy of q we have:

H(q) = -Zqmlogq_ = -ZpiiogPi- Z pi(l°gq'n-I°gPi) =
m i mr<i<(m+l)r

H(p) + Zq m Z Pi, Pi--lOg-- =

m mr<i<(m+l)r qm qm

H(p) - ZqmH(plq,.) = H(p) - H(piq) < H(p)

ra

where H(piq) is the conditional entropy of the distribution {Pi} relative to

the distribution {qm} [1].

12

8. Application to AIMS Traces

We calculated the entropy of events, entropy of time stamps and commu-

nication entropy of AIMS traces of 4 fluid dynamic programs. The result

are shown in Tables 2-3. The basic data about the programs are listed in

Table 1.

Small entropy relative to the trace size indicates that a significant number

of patterns exists in program traces. For example, a small value of com-

munication entropy in the column 3 of Table 3 indicates that processors

send messages in a very regular pattern. The Table 4 compares a theore-

tial lower bound of a trace code length with length of the code generated

by compress and gzip utilities.

TABLE 1. Basic data on the programs

Program name tl i2 t3 t4

Number of Processors 10 27 11 64

Communication Library MPI PVM PVM MPI

Total Execution Time (s) 313.3 1987.3 1776.0 11.4

TABLE 2. Time stamps entropy as function of time precision

tl t2 i3 t4

10% 457 2588 1074 1273

5% 653 3985 1323 3831

2% 958 6510 1645 9062

1% 1234 8748 1899 15578

0.5% 1517 11335 2126 20730

TABLE 3. Minimal code lengths

Send code length

Receive code length

Event code length

Markov chain state number

tl t2

301 290

196 290

831 8748

4519 4234

t3 t4

46 23052

99 23052

3914

4261

58295

3485

13

TABLE4. Comparison of Sizesof Different TraceEncodings

tl t2 t3 t4

Entropy minimal code length (0.5% 30897 422879 61453 2867455

time approximation)

Actual trace size 278544 1999818 378893 15269659

Number of records 7013 96104 13817 685581

UNIX compressed 82341 639297 124001 3505437

gziped 60804 482948 93358 3037194

9. Conclusions

In this paper we have studied the information content of traces of mes-

sage passing programs. The information content is measured as the sum

of the entropy of the trace events, the entropy of program communica-

tions and the entropy of time stamps.

The information content of program traces is significantly smaller than

the trace size. There are several reasons for this: (1) event entropy is

related to the entropy of the Markov chain of the program, (2) the mes-

sages of common programs have well defined patterns, and (3) the time

stamp resolution can be decreased significantly without affecting the

event causality. Indeed, we found by direct calculation of the entropy of

traces of 4 programs that the entropy is smaller by a factor of 5 than the

trace size. This also indicates that a significant number of patterns exists

in thouse program traces.

A practical conclusion of this study is that an entropy efficient encoding

of program traces will result in significant reduction of trace sizes.

14

10. References

[1] R.B. Ash. Information Theory, Dover, N.-Y., 1990.

[2] A.V. Aho, R. Sefl_i, J.D. Ullman. Compilers. Principles, Techniques, and Tools. Addison-

Wesley, 1988.

13J S. L. Graham, EB. Kessler, M.K. McKusick. An Executfon Profi'lcr for Modular Pro-
grams. Software-Practice and Experience, Vol 13, 671-685 (1983).

[4] Jerry Yan, Melisa Schmidt, Cathy Schulbach. The Automated Instrumentation and

Monitoring System (AIMS). Report NAS-97-001, January 1997.

[5] MPI: A Message-Passing Interface Standard. June 12. 1995.

[6] Jerry Yan,Henry Jin, Melissa Schrnidt. Performance Data Gathering and Representation

from Fixed Size Statistical Data. NAS Report NAS-98-O03.

[7] D.M. Cvetkovic, M.Doob, H. Sachs. Spectra of Graphs. V.E.B. Deutscher Verlag Wis-
senschften, 1979.

[8] J.H. Van Lint, R.M. Wilson. A Course in Combinatorics. Cambridge Univ. Press., 1996.

f9] D.E. Knuth. Dynamic Huffman Coding. I. of Algorithms, 6:I63-I80, I985.

[10] D. Salomon. Data Compression, Springer-Verlag, N-Y, 1998.

[11] B.P. Miller, M.D Callaghan, J.M. Cargille, J.K. Hollingsworth, R.B. Irvin, K.L. Kara-

vanic, K. Kunchithapadam, and T. Newhall. The Paradyn Parallel Performance Mea-

surement Tools. IEEE Computer 28 (11), November 1995, pp. 37-46.

[12] G.H. Golub, C.F. Van Loan. Matrix Computations. The Johns Hopkins Univ. Press,
1996.

[13] M. Frumkin, R. Hood, L. Lopez. Trace-Driven Debugging of Message Passing Programs.

IPPS/SPDP 1998, Proceedings, March 30-April 3, 1998, Orlando, pp. 753-762.

15

